Research Spotlight

Whole-Genome Sequences of Influenza A(H1N1)pdm09 Virus Isolates from Kerala, India.

Sara Jones,a Raji Prasad,a Anjana S. Nair,a Sanjai Dharmaseelan,b Remya Usha,a Radhakrishnan R. Nair,c Radhakrishna Madhavan Pillaia

Viral Disease Biology Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, Indiaa; Microbiome Biology Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, Indiab; Laboratory Medicine and Molecular Diagnostics Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, Indiac

Genome Announc. 2017 Jul 13;5(28). pii: e00598-17. doi: 10.1128/genomeA.00598-17.


We report here the whole-genome sequence of six clinical isolates of influenza A(H1N1)pdm09, isolated from Kerala, India. Amino acid analysis of all gene segments from the A(H1N1)pdm09 isolates obtained in 2014 and 2015 identified several new mutations compared to the 2009 A(H1N1) pandemic strain.

Insights into dovetailing GTD and Cancers.

Revathy Nadhana, Jayashree V. Vamanb, Nirmala Cc, Satheesh Kumar Sengodana, Sreelatha Krishnakumar Hemalathaa, Arathi Rajana, Geetu Rose Varghesea, Neetha RLa, Amritha Krishna BVa, Ratheeshkumar Thankappana, Priya Srinivasa,∗

a Cancer Research Program 5, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
b Department of Obstetrics and Gynecology, SAT Hospital, Government Medical College, Thiruvananthapuram, Kerala, India.
c Department of Obstetrics and Gynecology, T D Medical College, Alappuzha, Kerala, India

Crit Rev Oncol Hematol. 2017 Jun;114:77-90. doi: 10.1016/j.critrevonc.2017.04.001. Epub 2017 Apr 7.


Gestational trophoblastic diseases (GTD) encompass a group of placental tumors which mostly arise due to certain fertilization defects, resulting in the over-proliferation of trophoblasts. The major characteristic of this diseased state is that β-hCG rises up manifold than that is observed during pregnancy. The incidence of GTD when analyzed on a global scale, figures out that there is a greater risk in South-East Asia, the reason of which remains unclear. An insight into any possible correlation of GTD incidence with cancers, other than choriocarcinoma, is being attempted here. Also, we review the recent developments in research on the molecular etiopathology of GTD. This review would render a wider eye towards a new paradigm of thoughts to connect GTD and breast cancer, which has not been into the picture till date.

Cytoplasmic translocation of MTA1 coregulator promotes de-repression of SGK1 transcription in hypoxic cancer cells.

H Marzook1, S Deivendran1, B George1, G Reshmi1, TR Santhoshkumar1 , R Kumar1,2 and MR Pillai1

Oncogene. 2017 May 15. doi: 10.1038/onc.2017.19. [Epub ahead of print]


Chromatin remodeling factor metastatic tumor protein 1 (MTA1), one of the most upregulated oncogene in human cancer, has an important role in gene expression, cell survival and promoting hypoxic response. Successful cancer progression is dependent on the ability of cells to utilize its survival pathways for adapting to hypoxic microenvironment. Although MTA1 is a stress-responsive gene, but whether hypoxia modulates its function and its role in engaging other core stress-responsive survival pathway(s) remains unknown. Here we have discovered that MTA1 is a novel corepressor of serum and glucocorticoid-inducible kinase 1 (SGK1). Surprisingly, this regulatory corepressive function of MTA1 is lost under hypoxia, allowing upregulation of SGK1 expression and engaging the MTA1-SGK1 axis for the benefit of the cell survival. The underlying mechanism of the noticed stimulation of SGK1 expression by hypoxia includes de-repression of SGK1 transcription because of hypoxia-triggered nucleus-to-cytoplasmic translocation of MTA1. In addition, the newly recognized cytoplasmic translocation of MTA1 was dependent on the chaperoning function of heat shock protein 90 (HSP90) and co-accompanied by the formation of MTA1, HSP90 and HIF1α complex under hypoxic condition but not under normoxic condition. Hypoxia-triggered redistribution of MTA1, SGK1 upregulation and cell survival functions were compromised by a pharmacological SGK1 inhibitor. In summary, for the first time, we report MTA1 regulation of SGK1 expression, hypoxia-dependent MTA1 translocation to the cytoplasm and de-repression of SGK1 transcription. These findings illustrate how cancer cells utilize a chromatin remodeling factor to engage a core survival pathway to support its cancerous phenotypes, and reveal new facets of MTA1-SGK1 axis by a physiologic signal in cancer progression.

Wnt5a is a crucial regulator of neurogenesis during cerebellum development.

Chandramohan Subashini1, Sivadasan Bindu Dhanesh1, Chih-Ming Chen2, Paul Ann Riya1, Vadakkath Meera1, Thulasi Sheela Divya1, Rejji Kuruvilla2, Kerstin Buttler3 & Jackson James1

Sci Rep. 2017 Feb 16;7:42523. doi: 10.1038/srep42523.


The role of Wnt5a has been extensively explored in various aspects of development but its role in cerebellar development remains elusive. Here, for the first time we unravel the expression pattern and functional significance of Wnt5a in cerebellar development using Wnt5a−/− and Nestin-Cre mediated conditional knockout mouse models. We demonstrate that loss of Wnt5a results in cerebellar hypoplasia and depletion of GABAergic and glutamatergic neurons. Besides, Purkinje cells of the mutants displayed stunted, poorly branched dendritic arbors. Furthermore, we show that the overall reduction is due to decreased radial glial and granule neuron progenitor cell proliferation. At molecular level we provide evidence for non-canonical mode of action of Wnt5a and its regulation over genes associated with progenitor proliferation. Altogether our findings imply that Wnt5a signaling is a crucial regulator of cerebellar development and would aid in better understanding of cerebellar disease pathogenesis caused due to deregulation of Wnt signaling.

DEPTOR promotes survival of cervical squamous cell carcinoma cells and its silencing induces apoptosis through downregulating PI3K/AKT and by up-regulating p38 MAP kinase.

Srinivas KP1, Viji R1, Dan VM1, Sajitha IS1, Prakash R1, Rahul PV1, Santhoshkumar TR1, Lakshmi S2, Pillai MR1

Oncotarget. 2016 Mar 16. doi: 10.18632/oncotarget.8131. [Epub ahead of print]


DEPTOR is an endogenous inhibitor of mTOR complexes, de-regulated in cancers. The present study reveals a vital role for DEPTOR in survival of cervical squamous cell carcinoma (SCC). DEPTOR was found to be overexpressed in both cervical SCC cells and tissues and it's silencing in cervical SCC cells induced apoptosis, mainly by up-regulation of p38 MAPK and by inhibiting PI3K/AKT pathway via a feed-back inhibition from mTORC1-S6K. DEPTOR silencing resulted in reduced expression of the nitric oxide synthases iNOS and eNOS, as well as increased activation of ERK1/2 and p38 MAP kinases. Activation of AKT signaling by overexpression of constitutively active-AKT (CA-AKT) failed to overcome the apoptosis caused by DEPTOR silencing. Similarly pharmacological inhibition of ERK also failed to control apoptosis. However pharmacological inhibition of p38 MAPK rescued the cells from apoptosis, indicating the major role of p38 MAPK in cell death induced by DEPTOR silencing. DEPTOR was also found to regulate ERK1/2 in an AKT dependent manner. DEPTOR knockdown induced cell death in SiHa cells overexpressing the anti-apoptotic Bcl-2 and Bcl-xL, indicating strong survival role of DEPTOR in these cells. DEPTOR overexpression activated PI3K/AKT by relieving the negative feed-back inhibition from mTORC1-S6K. DEPTOR regulation was also observed to be independent of HPV E6/E7 oncoproteins, but it might be a molecular co-factor contributing to cervical carcinogenesis. In summary, DEPTOR is found to promote survival of cervical SCC cells and its reduction induced apoptosis via differential effects on PI3K/AKT and p38 MAPK and can be a potential target in cervical SCC.

Downregulation of vimentin in macrophages infected with live Mycobacterium tuberculosis is mediated by Reactive Oxygen Species

P. P. Mahesh, R. J. Retnakumar ∧ Sathish Mundayoor

Scientific Reports 6, Article number: 21526 (2016) doi:10.1038/srep21526


Mycobacterium tuberculosis persists primarily in macrophages after infection and manipulates the host defence pathways in its favour. 2D gel electrophoresis results showed that vimentin, an intermediate filament protein, is downregulated in macrophages infected with live Mycobacterium tuberculosis H37Rv when compared to macrophages infected with heat- killed H37Rv. The downregulation was confirmed by Western blot and quantitative RT-PCR. Besides, the expression of vimentin in avirulent strain, Mycobacterium tuberculosis H37Ra- infected macrophages was similar to the expression in heatkilled H37Rv- infected macrophages. Increased expression of vimentin in H2O2- treated live H37Rvinfected macrophages and decreased expression of vimentin both in NAC and DPI- treated heat-killed H37Rv-infected macrophages showed that vimentin expression is positively regulated by ROS. Ectopic expression of ESAT-6 in macrophages decreased both the level of ROS and the expression of vimentin which implies that Mycobacterium tuberculosis-mediated downregulation of vimentin is at least in part due to the downregulation of ROS by the pathogen. Interestingly, the incubation of macrophages with anti-vimentin antibody increased the ROS production and decreased the survival of H37Rv. In addition, we also showed that the pattern of phosphorylation of vimentin in macrophages by PKA/ PKC is different from monocytes, emphasizing a role for vimentin phosphorylation in macrophage differentiation.

ERK mediated upregulation of death receptor 5 overcomes the lack of p53 functionality in the diaminothiazole DAT1 induced apoptosis in colon cancer models: efficiency of DAT1 in Ras-Raf mutated cells.

Thamkachy R1, Kumar R1, Rajasekharan KN2, Sengupta S3

Mol Cancer. 2016 Mar 8;15:22. doi: 10.1186/s12943-016-0505-7


BACKGROUND: p53 is a tumour suppressor protein that plays a key role in many steps of apoptosis, and malfunctioning of this transcription factor leads to tumorigenesis. Prognosis of many tumours also depends upon the p53 status. Most of the clinically used anticancer compounds activate p53 dependent pathway of apoptosis and hence require p53 for their mechanism of action. Further, Ras/Raf/MEK/ERK axis is an important signaling pathway activated in many cancers. Dependence of diaminothiazoles, compounds that have gained importance recently due to their anticancer and anti angiogenic activities, were tested in cancer models with varying p53 or Ras/Raf mutational status.
METHODS: In this study we have used p53 mutated and knock out colon cancer cells and xenograft tumours to study the role of p53 in apoptosis mediated by diaminothiazoles. Colon cancer cell lines with varying mutational status for Ras or Raf were also used. We have also examined the toxicity and in vivo efficacy of a lead diaminothiazole 4-Amino-5-benzoyl-2-(4-methoxy phenylamino)thiazole (DAT1) in colon cancer xenografts.
RESULTS: We have found that DAT1 is active in both in vitro and in vivo models with nonfunctional p53. Earlier studies have shown that extrinsic pathway plays major role in DAT1 mediated apoptosis. In this study, we have found that DAT1 is causing p53 independent upregulation of the death receptor 5 by activating the Ras/Raf/MEK/ERK signaling pathway both in wild type and p53 suppressed colon cancer cells. These findings are also confirmed by the in vivo results. Further, DAT1 is more efficient to induce apoptosis in colon cancer cells with mutated Ras or Raf.
CONCLUSIONS: Minimal toxicity in both acute and subacute studies along with the in vitro and in vivo efficacy of DAT1 in cancers with both wild type and nonfunctional p53 place it as a highly beneficial candidate for cancer chemotherapy. Besides, efficiency in cancer cells with mutations in the Ras oncoprotein or its downstream kinase Raf raise interest in diaminothiazole class of compounds for further follow-up.

Plumbagin, a naphthaquinone derivative induces apoptosis in BRCA 1/2 defective castrate resistant prostate cancer cells as well as prostate cancer stem-like cells.

R S R1, K H S1, Somasundaram V2, S SK1, Nadhan R1, Nair RS3, Srinivas P4

Pharmacol Res. 2016 Mar;105:134-45. doi: 10.1016/j.phrs.2016.01.012. Epub 2016 Jan 22


Eventhough the role of BRCA1/2 in hereditary prostatic cancer is being unleashed at a rapid rate; their optimal clinical management remains undefined. Cancer stem cells are thought to be responsible for cancer chemoresistance and relapse, thus they represent a significant concern for cancer prognosis and therapy. In this study, we have analyzed the effect of Plumbagin (PB) and structurally related naphthaquinones on BRCA1/2 silenced prostate cancer cells and the ability of PB to target stem cells. Our cell proliferation studies showed that both PC-3 and DU145 cells were more sensitive to PB, though all the compounds induced mitochondrial potential loss, DNA fragmentation and morphological changes which are indicative of apoptosis. Both BRCA1/2 siRNA transfected PC-3 and DU145 cells exhibited increased sensitivity to PB. Gene expression profiling post PB treatment in BRCA1/2 silenced cells revealed that PB has a putative role in tumor suppression in BRCA defective cancers. Using flow cytometric analysis we have proved that PB has the putative ability to directly target CSCs. Overall studies suggest that PB's antitumour mechanisms holds promise for novel therapeutic approaches against BRCA mutated cancers as well as CSCs.

Curcumin inhibits B[a]PDE-induced procarcinogenic signals in lung cancer cells, and curbs B[a]P-induced mutagenesis and lung carcinogenesis.

Puliyappadamba VT1, Thulasidasan AK1, Vijayakurup V1, Antony J1, Bava SV1, Anwar S1, Sundaram S2, Anto RJ1.

Biofactors. 2015 Nov 12;41(6):431-42. doi: 10.1002/biof.1244. Epub 2015 Dec 8.


Benzo[a]pyrene is a procarcinogen present in environment and cigarette smoke, which could be bio-transformed in vivo to B[a]PDE, a potent carcinogen known to form DNA adducts and induce mutations. We observed that curcumin, a known chemopreventive, could significantly inhibit the survival of lung cancer cells exposed to B[a]PDE. It also downregulates B[a]PDE-induced nuclear translocation of NF-κB as assessed by Electrophoretic Mobility Shift Assay (EMSA) and NF-κB-dependent reporter gene assay. Ames assay demonstrated its ability to revert the mutagenic property of benzo[a]pyrene. These observations prompted us to evaluate the efficacy of curcumin in preventing B[a]P-induced lung carcinogenesis in vivo and to explore the molecular mechanism associated with it. The average number of tumor nodules present in the lungs of the Swiss albino mice, which received benzo[a]pyrene, was significantly high compared to that received curcumin as 2% diet along with B[a]P. Curcumin treatment significantly reverted histopathological deviations in the lung tissues due to benzo[a]pyrene ingestion. Moreover, curcumin diet reduced benzo[a]pyrene-induced activation of NF-κB and MAPK signaling and Cox-2 transcription in lung tissues of mice. Taken together, this study illustrates multifaceted efficacy of curcumin in preventing lung cancer. © 2015 BioFactors, 41(6):431-442, 2015.

Mycobacterium tuberculosis Infection Induces HDAC1-Mediated Suppression of IL-12B Gene Expression in Macrophages

Chandran A1, Antony C2, Jose L1, Mundayoor S1, Natarajan K2, Kumar RA1.

Front Cell Infect Microbiol. 2015 Dec 2;5:90. doi: 10.3389/fcimb.2015.00090. eCollection 2015.


Downregulation of host gene expression is one of the many strategies employed by intracellular pathogens such as Mycobacterium tuberculosis (MTB) to survive inside the macrophages and cause disease. The underlying molecular mechanism behind the downregulation of host defense gene expression is largely unknown. In this study we explored the role of histone deacetylation in macrophages in response to infection by virulent MTB H37Rv in manipulating host gene expression. We show a significant increase in the levels of HDAC1 with a concomitant and marked reduction in the levels of histone H3-acetylation in macrophages containing live, but not killed, virulent MTB. Additionally, we show that HDAC1 is recruited to the promoter of IL-12B in macrophages infected with live, virulent MTB, and the subsequent hypoacetylation of histone H3 suppresses the expression of this gene which plays a key role in initiating Th1 responses. By inhibiting immunologically relevant kinases, and by knockdown of crucial transcriptional regulators, we demonstrate that protein kinase-A (PKA), CREB, and c-Jun play an important role in regulating HDAC1 level in live MTB-infected macrophages. By chromatin immunoprecipitation (ChIP) analysis, we prove that HDAC1 expression is positively regulated by the recruitment of c-Jun to its promoter. Knockdown of HDAC1 in macrophages significantly reduced the survival of intracellular MTB. These observations indicate a novel HDAC1-mediated epigenetic modification induced by live, virulent MTB to subvert the immune system to survive and replicate in the host.

PPIA rs6850: A > G single-nucleotide polymorphism is associated with raised plasma cyclophilin A levels in patients with coronary artery disease

Vinitha A1, Kutty VR2, Vivekanand A1, Reshmi G1, Divya G1, Sumi S1, Santosh KR3, Pratapachandran NS4, Ajit MS5, Kartha CC6,
Ramachandran S7

Mol Cell Biochem. 2016 Jan;412(1-2):259-68. doi: 10.1007/s11010-015-2632-7. Epub 2015 Dec 24.


Plasma level of cyclophilin A is a promising marker of vascular disease in patients with type 2 diabetes. Genetic variants in the peptidylprolyl isomerase A gene, encoding human cyclophilin may alter protein synthesis thus affecting its activity, function, and circulating plasma levels. We examined the effect of single-nucleotide polymorphisms (SNPs) within the PPIA gene on plasma levels of cyclophilin A and coupled this with status of vascular disease in patients with and without type 2 diabetes in 212 South Indian subjects. The regulatory region of PPIA gene was sequenced for SNPs. The association of SNPs with known blood markers of type 2 diabetes and coronary artery disease such as HbA1c, low- and high-density lipoproteins, triglycerides, fasting and postprandial blood sugar levels, and cyclophilin A were probed. We identified three SNPs namely, rs6850: A > G; (AG/-) c.*227_*228delAG and (-/T) c.*318_*319insT. Welchs two-sample t test indicated an association of SNP rs6850: A > G, located at the 5' UTR region with increased plasma levels of cyclophilin A in patients with coronary artery disease and with coronary artery disease associated with diabetes. The presence of rs6850: A > G variant was significantly associated with coronary artery disease irrespective of whether the patients had diabetes or not. In silico analysis of the sequence using different tools and matrix libraries did not predict any significant differential binding sites for rs6850: A > G, c.*227_*228delAG and c.*318_*319insT. Our results indicate that the SNP rs6850: A > G is associated with increased risk for elevated plasma levels of cyclophilin A and coronary artery disease in patients with and without type 2 diabetes.

6-Shogaol Inhibits Breast Cancer Cells and Stem Cell-Like Spheroids by Modulation of Notch Signaling Pathway and Induction of Autophagic Cell Death

Anasuya Ray, Smreti Vasudevan, Suparna Sengupta*

PLoS One. 2015 Sep 10;10(9):e0137614. doi: 10.1371/journal.pone.0137614. eCollection 2015


Cancer stem cells (CSCs) pose a serious obstacle to cancer therapy as they can be responsible for poor prognosis and tumour relapse. In this study, we have investigated inhibitory activity of the ginger-derived compound 6-shogaol against breast cancer cells both in monolayer and in cancer-stem cell-like spheroid culture. The spheroids were generated from adherent breast cancer cells. 6-shogaol was effective in killing both breast cancer monolayer cells and spheroids at doses that were not toxic to noncancerous cells. The percentages of CD44+CD24-/low cells and the secondary sphere content were reduced drastically upon treatment with 6-shogaol confirming its action on CSCs. Treatment with 6-shogaol caused cytoplasmic vacuole formation and cleavage of microtubule associated protein Light Chain3 (LC3) in both monolayer and spheroid culture indicating that it induced autophagy. Kinetic analysis of the LC3 expression and a combination treatment with chloroquine revealed that the autophagic flux instigated cell death in 6-shogaol treated breast cancer cells in contrast to the autophagy inhibitor chloroquine. Furthermore, 6-shogaol-induced cell death got suppressed in the presence of chloroquine and a very low level of apoptosis was exhibited even after prolonged treatment of the compound, suggesting that autophagy is the major mode of cell death induced by 6-shogaol in breast cancer cells. 6-shogaol reduced the expression levels of Cleaved Notch1 and its target proteins Hes1 and Cyclin D1 in spheroids, and the reduction was further pronounced in the presence of a γ-secretase inhibitor. Secondary sphere formation in the presence of the inhibitor was also further reduced by 6-shogaol. Together, these results indicate that the inhibitory action of 6-shogaol on spheroid growth and sustainability is conferred through γ-secretase mediated down-regulation of Notch signaling. The efficacy of 6-shogaol in monolayer and cancer stem cell-like spheroids raise hope for its therapeutic benefit in breast cancer treatment.